كلية الحاسبات والذكاء الإصطناعي

Calculus

Lecture 04

Dr. Ahmed Hagag

Faculty of Computers and Artificial Intelligence Benha University

Spring 2023

Course Syllabus

$>$ Chapter 1: Numbers, Sets, and Functions.
$>$ Chapter 2: Limits and Continuity.
> Chapter 3: Derivatives and Differentiation Rules.
$>$ Chapter 4: Applications of Differentiation.
\Rightarrow Chanter 5: Integrals.
> Chapter 6: Techniques of Integration.
> Chapter 7: Applications of Definite Integrals.

Chapter 2 Topics

- Definition of Limit.
- Finding Limits Graphically and Numerically.
- Limit Laws.
- One-Sided Limits.
- Infinite Limits.
- Continuity.

Definition of Limit (1/8)

- The limit is one of the tools that we use to describe the behavior of a function as the values of x approach, or become closer and closer to, some particular number.

Definition of Limit (2/8)

كلية الحاسبات والذكاء الإصطناعي

How does the function

$$
f(x)=\frac{x^{2}-1}{x-1}
$$

behave near $x=1$?

Definition of Limit (3/8)

How does the function

$$
f(x)=\frac{x^{2}-1}{x-1}
$$

behave near $x=1$?
we can simplify the formula by factoring the numerator and canceling common factors:

$$
f(x)=\frac{(x-1)(x+1)}{x-1}=x+1 \quad \text { for } \quad x \neq 1
$$

Definition of Limit (3/8)

How does the function
$f(x)=\frac{x^{2}-1}{x-1}=x+1 \quad$ for $x \neq 1$

Definition of Limit (4/8)

كلية الحاسبات والذكاء الإصطناعي

How does the function

$$
D(f)=\mathbb{R}-\{1\}
$$

$$
f(x)=\frac{x^{2}-1}{x-1}=x+1 \quad \text { for } x \neq 1
$$

x	0.9	0.99	0.999	0.9999	1	1.0001	1.001	1.01	1.1
$f(x)$	1.9	1.99	1.999	1.9999	-	2.0001	2.001	2.01	2.1

$$
f(x) \text { approaches to } 2
$$

Definition of Limit (4/8)

كلية الحاسبات والذكاء الإصطناعي

How does the function

$$
D(f)=\mathbb{R}-\{1\}
$$

$f(x)=\frac{x^{2}-1}{x-1}=x+1 \quad$ for $x \neq 1$
We would say that $f(x)$ approaches the limit 2 as x approaches 1, and write

$$
\lim _{x \rightarrow 1} f(x)=2, \quad \text { or } \quad \lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2
$$

Definition of Limit (5/8)

كلية الحاسبات والذكاء الإصطناعي

Definition:

- Suppose $f(x)$ is defined when x is near the number a. (This means that f is defined on some open interval that contains a, except possibly at a itself.) Then we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

"the limit of $f(x)$, as x approaches a, equals L "

Definition of Limit (6/8)

كلية الحاسبات والذكاء الإصطناعي

$\lim _{x \rightarrow a} f(x)=L$

in all three cases

Case 1

Definition of Limit (7/8)

كلية الحاسبات والذكاء الإصطناعي

$\lim _{x \rightarrow a} f(x)=L$

 in all three casesCase 2

Definition of Limit (8/8)

كلية الحاسبات والذكاء الإصطناعي

$\lim _{x \rightarrow a} f(x)=L$
 $x \rightarrow a$

in all three cases

Case 3

Finding Limits (1/3)

Example 1 (1/2):

- What happens to $f(x)=x^{2}-x+2$ when x is a number very close to (but not equal to) 2 ?

x	$f(x)$	x	$f(x)$
1.0	2.000000	3.0	8.000000
1.5	2.750000	2.5	5.750000
1.8	3.440000	2.2	4.640000
1.9	3.710000	2.1	4.310000
1.95	3.852500	2.05	4.152500
1.99	3.970100	2.01	4.030100
1.995	3.985025	2.005	4.015025
1.999	3.997001	2.001	4.003001

Finding Limits (1/3)

Example 1 (2/2):

- What happens to $f(x)=x^{2}-x+2$ when x is a number very close to (but not equal to) 2 ?

$$
\lim _{x \rightarrow 2}\left(x^{2}-x+2\right)=4
$$

Finding Limits (2/3)

كلية الحاسبات والذكاء الإصطناعي

Example 2 (1/4):

- What happens to $g(x)=\frac{x^{3}-2 x^{2}}{x-2}$ when x is 2 ?

Finding Limits (2/3)

Example 2 (2/4):

- What happens to $g(x)=\frac{x^{3}-2 x^{2}}{x-2}$ when x is 2 ?

The function $g(x)$ is undefined when $x=2$, since the value $x=2$ makes the denominator 0 .

Finding Limits (2/3)

Example 2 (3/4):

- What happens to $g(x)=\frac{x^{3}-2 x^{2}}{x-2}$ when x is 2 ?

$$
\lim _{x \rightarrow 2} g(x)=4
$$

Finding Limits (2/3)

Example 2 (4/4):

- What happens to $g(x)=\frac{x^{3}-2 x^{2}}{x-2}$ when x is 2 ?
$g(x)$ simplifies to

$$
g(x)=\frac{x^{2}(x-2)}{x-2}=x^{2}
$$

provided $x \neq 2$.
$\lim _{x \rightarrow 2} g(x)=\lim _{x \rightarrow 2} x^{2}=4$.

Finding Limits (3/3)

Example 3:

Determine $\lim _{x \rightarrow 2} h(x)$ for the function h defined by $x \rightarrow 2$
$h(x)= \begin{cases}x^{2}, & \text { if } x \neq 2, \\ 1, & \text { if } x=2 .\end{cases}$
$\lim _{x \rightarrow 2} h(x)=\lim _{x \rightarrow 2} x^{2}=4$.

$\varepsilon-\delta$ Definition of Limit (1/2)

$\varepsilon-\delta$ Definition of Limit (2/2)

Let f be a function defined on an open interval containing c (except possibly at c), and let L be a real number. The statement

$$
\lim _{x \rightarrow c} f(x)=L
$$

means that for each $\varepsilon>0$ there exists a $\delta>0$ such that if

$$
0<|x-c|<\delta
$$

then

$$
|f(x)-L|<\varepsilon .
$$

The Precise Definition of a limit

Limit Laws (1/20)

Suppose that c is a constant and the limits
$\lim _{x \rightarrow a} f(x) \quad$ and $\quad \lim _{x \rightarrow a} g(x) \quad$ exist. Then

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
2. $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
3. $\lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x)$
4. $\lim _{x \rightarrow a}[f(x) g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
5. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$

Limit Laws (2/20)

6. $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$
7. $\lim _{x \rightarrow a} c=c$
where n is a positive integer
8. $\lim _{x \rightarrow a} x^{n}=a^{n} \quad$ where n is a positive integer
9. $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a} \quad$ where n is a positive integer (If n is even, we assume that $a>0$.)
10. $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)} \quad$ where n is a positive integer
[If n is even, we assume that $\lim _{x \rightarrow a} f(x)>0$.]

Example 1: Evaluate the following limit (1/2)

$\lim _{x \rightarrow 5}\left(2 x^{2}-3 x+4\right)$

Limit Laws (3/20)

كلية الحاسبات والذكاء الإصطناعي

Example 1: Evaluate the following limit (2/2)

$$
\begin{aligned}
\lim _{x \rightarrow 5}\left(2 x^{2}-\right. & 3 x+4) \\
& =\lim _{x \rightarrow 5}\left(2 x^{2}\right)-\lim _{x \rightarrow 5}(3 x)+\lim _{x \rightarrow 5} 4 \\
& =2 \lim _{x \rightarrow 5} x^{2}-3 \lim _{x \rightarrow 5} x+\lim _{x \rightarrow 5} 4 \\
& =2\left(5^{2}\right)-3(5)+4 \\
& =39
\end{aligned}
$$

Example 2: Evaluate the following limit (1/2)

$\lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}-1}{5-3 x}$

Limit Laws (4/20)

كلية الحاسبات والذكاء الإصطناعي

Example 2: Evaluate the following limit (2/2)

$$
\lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}-1}{5-3 x}=\frac{\lim _{x \rightarrow-2}\left(x^{3}+2 x^{2}-1\right)}{\lim _{x \rightarrow-2}(5-3 x)}
$$

$$
\begin{aligned}
& =\frac{\lim _{x \rightarrow-2} x^{3}+2 \lim _{x \rightarrow-2} x^{2}-\lim _{x \rightarrow-2} 1}{\lim _{x \rightarrow-2} 5-3 \lim _{x \rightarrow-2} x} \\
& =\frac{(-2)^{3}+2(-2)^{2}-1}{5-3(-2)}
\end{aligned}
$$

$$
=-\frac{1}{11}
$$

Limit Laws (5/20)

Limits of Polynomial and Rational Function

Limit of a Polynomial Function Let $p(x)$ be a polynomial function, a any real number. Then,

$$
\lim _{x \rightarrow a} p(x)=p(a)
$$

Limit of a Rational Function Let $r(x)=p(x) / q(x)$ be a rational function, where $p(x)$ and $q(x)$ are polynomials. Let a any real number such that $q(a) \neq 0$. Then,

$$
\lim _{x \rightarrow a} r(x)=r(a)
$$

Limit Laws (6/20)

كلية الحاسبات والذكاء الإصطناعي

Recall: Example 1: Evaluate the following limit

$$
\begin{aligned}
& \lim _{x \rightarrow 5}\left(2 x^{2}-3 x+4\right) \\
& =2\left(5^{2}\right)-3(5)+4 \\
& =39
\end{aligned}
$$

Limit Laws (7/20)

Recall: Example 2: Evaluate the following limit
$\lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}-1}{5-3 x}$

$$
\begin{aligned}
& =\frac{(-2)^{3}+2(-2)^{2}-1}{5-3(-2)} \\
& =-\frac{1}{11}
\end{aligned}
$$

Limit Laws (8/20)

The Limit of a Function Involving a Radical

Let n be a positive integer. The limit below is valid for all a when n is odd, and is valid for $a>0$ when n is even.

$$
\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}
$$

Limit Laws (9/20)

كلية الحاسبات والذكاء الإصطناعي

Example 4: Evaluate the following limit (1/2)

$\lim _{x \rightarrow 3} \frac{x^{2}-x-1}{\sqrt{x+1}}$

Limit Laws (9/20)

كلية الحاسبات والذكاء الإصطناعي

Example 4: Evaluate the following limit (2/2)

$$
\lim _{x \rightarrow 3} \frac{x^{2}-x-1}{\sqrt{x+1}}
$$

$$
\begin{aligned}
& =\frac{\lim _{x \rightarrow 3}\left(x^{2}-x-1\right)}{\lim _{x \rightarrow 3} \sqrt{x+1}} \\
& =\frac{\lim _{x \rightarrow 3}\left(x^{2}-x-1\right)}{\sqrt{\lim _{x \rightarrow 3}(x+1)}} \\
& =\frac{3^{2}-3-1}{\sqrt{3+1}} \\
& =\frac{5}{\sqrt{4}}
\end{aligned}
$$

Limit Laws (10/20)

Limits of Trigonometric Functions

Let a be a real number in the domain of the given trigonometric function.

$$
\lim _{x \rightarrow a} \sin x=\sin a
$$

$\lim \tan x=\tan a$ $x \rightarrow a$
$\lim \sec x=\sec a$ $x \rightarrow a$
$\lim \cos x=\cos a$ $x \rightarrow a$
$\lim \cot x=\cot a$ $x \rightarrow a$
$\lim \csc x=\csc a$ $x \rightarrow a$

Limit Laws (11/20)

Limits of Trigonometric Functions (Examples)

a. $\lim _{x \rightarrow 0} \tan x=\tan (0)=0$
$x \rightarrow 0$
b. $\lim _{x \rightarrow \pi}(x \cos x)=\left(\lim _{x \rightarrow \pi} x\right)\left(\lim _{x \rightarrow \pi} \cos x\right)=\pi \cos (\pi)=-\pi$
c. $\lim _{x \rightarrow 0} \sin ^{2} x=\lim _{x \rightarrow 0}(\sin x)^{2}=0^{2}=0$

Limit Laws (12/20)

Example 5: Evaluate the following limit (1/3)
$\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$

Limit Laws (12/20)

كلية الحاسبات والذكاء الإصطناعي

Example 5: Evaluate the following limit (2/3)
$\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\frac{0}{0}$

Undetermined Value

Undetermined (Indeterminate) values

$\frac{0}{0}$	$\frac{ \pm \infty}{ \pm \infty}$	$\infty-\infty$	$0(\infty)$	0^{0}	1^{∞}	∞^{0}

Determined values

$\infty+\infty=\infty$	$-\infty-\infty=-\infty$	$0^{\infty}=0$	$0^{-\infty}=\infty$	$\infty \cdot \infty=\infty$

Limit Laws (12/20)

Example 5: Evaluate the following limit (2/3)
$\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\frac{0}{0}$

Dividing Out
 Technique

Limit Laws (12/20)

كلية الحاسبات والذكاء الإصطناعي

Example 5: Evaluate the following limit (3/3)

$$
\begin{array}{rlr}
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1} & =2 & \begin{array}{c}
\text { Dividing Out } \\
\text { Technique }
\end{array} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{x-1} \\
& =\lim _{x \rightarrow 1}(x+1) \\
& =1+1=2
\end{array}
$$

Limit Laws (13/20)

Example 6: Evaluate the following limit (1/4)

$\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}$

Limit Laws (13/20)

Example 6: Evaluate the following limit (2/4)

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}=\frac{0}{0} & =\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}+x+1\right)}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}+x+1\right)}{(x-1)} \\
& =\lim _{x \rightarrow 1}\left(x^{2}+x+1\right) \\
& =1^{2}+1+1 \\
& =3
\end{aligned}
$$

Limit Laws (13/20)

Example 6: Evaluate the following limit (3/4)

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1} \square=3 & =\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}+x+1\right)}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}+x+1\right)}{(x-1)} \\
& =\lim _{x \rightarrow 1}\left(x^{2}+x+1\right) \\
& =1^{2}+1+1 \\
& =3
\end{aligned}
$$

Limit Laws (13/20)

Example 6: Evaluate the following limit (4/4)
$\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1} \square=3$

Limit Laws (14/20)

كلية الحاسبات والذكاء الإصطناعي

Example 7: Evaluate the following limit (1/4)

$$
\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}=\frac{0}{0}
$$

Limit Laws (14/20)

Example 7: Evaluate the following limit (2/4)

$$
\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}=\frac{0}{0}
$$

Rationalizing Technique

Multiplying by the conjugate

Limit Laws (14/20)

Example 7: Evaluate the following limit (3/4)

$$
\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}=\frac{0}{0}
$$

Rationalizing

Technique
Multiplying by the conjugate

$$
\begin{aligned}
\frac{\sqrt{x}-2}{x-4} \cdot \frac{\sqrt{x}+2}{\sqrt{x}+2} & =\frac{(\sqrt{x})^{2}-2^{2}}{(x-4)(\sqrt{x}+2)} \\
& =\frac{x-4}{(x-4)(\sqrt{x}+2)}=\frac{1}{\sqrt{x}+2}
\end{aligned}
$$

Limit Laws (14/20)

Example 7: Evaluate the following limit (4/4)
$\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}=\frac{1}{4}$

Rationalizing

 TechniqueMultiplying by the conjugate
$\lim _{x \rightarrow 4} \frac{1}{\sqrt{x}+2}=\frac{1}{\sqrt{4}+2}=\frac{1}{2+2}=\frac{1}{4}$

Limit Laws (15/20)

Example 8: Evaluate the following limit (1/5)

$\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}$

Limit Laws (15/20)

Example 8: Evaluate the following limit (2/5)
$\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}=\frac{0}{0}$

Limit Laws (15/20)

Example 8: Evaluate the following limit (3/5)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x} & =\left(\frac{\sqrt{x+1}-1}{x}\right)\left(\frac{\sqrt{x+1}+1}{\sqrt{x+1}+1}\right) \\
& =\frac{(x+1)-1}{x(\sqrt{x+1}+1)} \\
& =\frac{x}{x(\sqrt{x+1}+1)} \\
& =\frac{1}{\sqrt{x+1}+1}, \quad x \neq 0
\end{aligned}
$$

Limit Laws (15/20)

Example 8: Evaluate the following limit (4/5)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x} & =\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+1}+1} \\
& =\frac{1}{1+1} \\
& =\frac{1}{2}
\end{aligned}
$$

Limit Laws (15/20)

Example 8: Evaluate the following limit (5/5)

Limit Laws (16/20)

The Squeeze (Sandwich/Pinching) Theorem (1/2)

If $h(x) \leq f(x) \leq g(x)$
when x is near a (except possibly at a) and

$$
=\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)=L
$$

Then

$$
\lim _{x \rightarrow a} f(x)=L
$$

Limit Laws (16/20)

The Squeeze (Sandwich/Pinching) Theorem (2/2)

$$
h(x) \leq f(x) \leq g(x)
$$

Limit Laws (17/20)

كلية الحاسبات والذكاء الإصطناعي

Example 1:

Given that

$$
1-\frac{x^{2}}{4} \leq u(x) \leq 1+\frac{x^{2}}{2} \quad \text { for all } x \neq 0
$$

find $\lim _{x \rightarrow 0} u(x)$, no matter how complicated u is.

Limit Laws (18/20)

Example 1:

$$
1-\frac{x^{2}}{4} \leq u(x) \leq 1+\frac{x^{2}}{2} \quad \text { for all } x \neq 0
$$

Since
$\lim _{x \rightarrow 0}\left(1-\left(x^{2} / 4\right)\right)=1 \quad$ and $\quad \lim _{x \rightarrow 0}\left(1+\left(x^{2} / 2\right)\right)=1$
the Squeeze Theorem implies that $\lim _{x \rightarrow 0} u(x)=1$

Limit Laws (18/20)

كلية الحاسبات والذكاء الإصطناعي
Example 1:

$$
1-\frac{x^{2}}{4} \leq u(x) \leq 1+\frac{x^{2}}{2} \quad \text { for all } x \neq 0
$$

Limit Laws (19/20)

كلية الحاسبات والذكاء الإصطناعي

Example 2:

Using the Sandwich Theorem:
If $\sqrt{5-2 x^{2}} \leq f(x) \leq \sqrt{5-x^{2}}$ for $-1 \leq x \leq 1$,
find $\lim _{x \rightarrow 0} f(x)$.

Limit Laws (20/20)

كلية الحاسبات والذكاء الإصطناعي

Example 2:

If $\sqrt{5-2 x^{2}} \leq f(x) \leq \sqrt{5-x^{2}}$ for $-1 \leq x \leq 1$,
Since
$\lim _{x \rightarrow 0} \sqrt{5-2 x^{2}}=\sqrt{5-2(0)^{2}}=\sqrt{5}$
$\lim _{x \rightarrow 0} \sqrt{5-x^{2}}=\sqrt{5-(0)^{2}}=\sqrt{5}$,
then by the sandwich theorem, $\lim _{x \rightarrow 0} f(x)=\sqrt{5}$.

One-Sided Limits (1/6)

كلية الحاسبات والذكاء الإصطناعي

Definitions (1/4):

We write

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

and say the left-hand limit of $f(x)$ as x approaches a [or the limit of $f(x)$ as x approaches a from the left] is equal to L if we can make the values of $f(x)$ arbitrarily close to L by taking x to be sufficiently close to a with x less than a.

One-Sided Limits (1/6)

كلية الحاسبات والذكاء الإصطناعي

Definitions (2/4):

We write

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

and say the right-hand limit of $f(x)$ as x approaches a [or the limit of $f(x)$ as x approaches a from the right] is equal to L if we can make the values of $f(x)$ arbitrarily close to L by taking x to be sufficiently close to a with x greater than a.

One-Sided Limits (1/6)

كلية الحاسبات والذكاء الإصطناعي

Definitions (3/4):

(a) $\lim _{x \rightarrow a^{-}} f(x)=L$
(b) $\lim _{x \rightarrow a^{+}} f(x)=L$

One-Sided Limits (1/6)

كلية الحاسبات والذكاء الإصطناعي

Definitions (4/4):

We see that

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { if and only if }
$$

One-Sided Limits (2/6)

كلية الحاسبات والذكاء الإصطناعي

Example 1:

Show that $\lim _{x \rightarrow 0} f(x)$ is exist, where $f(x)=|x|$.

One-Sided Limits (2/6)

Example 1:

Show that $\lim _{x \rightarrow 0} f(x)$ is exist, where $f(x)=|x|$.
$\lim _{x \rightarrow 0^{-}} f(x)=0 \quad$ and
$\lim _{x \rightarrow 0^{+}} f(x)=0 \quad$ then
$\lim _{x \rightarrow 0} f(x)=0$

One-Sided Limits (3/6)

كلية الحاسبات والذكاء الإصطناعي

Example 2:

Show that $\lim _{x \rightarrow 0} f(x)$ is doesn't exist, where
$f(x)= \begin{cases}0, & x<0 \\ 1, & x \geq 0\end{cases}$

One-Sided Limits (3/6)

كلية الحاسبات والذكاء الإصطناعي

Example 2:

Show that $\lim _{x \rightarrow 0} f(x)$ is doesn't exist, where

$$
f(x)= \begin{cases}0, & x<0 \\ 1, & x \geq 0\end{cases}
$$

One-Sided Limits (3/6)

Example 2:

Show that $\lim _{x \rightarrow 0} f(x)$ is doesn't exist, where
$f(x)= \begin{cases}0, & x<0 \\ 1, & x \geq 0\end{cases}$

$$
\lim _{x \rightarrow 0^{-}} f(x)=0 \quad \text { and }
$$

$\lim _{x \rightarrow 0^{+}} f(x)=1$ then
$\lim _{x \rightarrow 0} f(x)$ is doesn't exist

One-Sided Limits (4/6)

كلية الحاسبات والذكاء الإصطناعي

Example 3:

Show that $\lim _{x \rightarrow 0} f(x)$ is doesn't exist, where $f(x)=\frac{|x|}{x}$

One-Sided Limits (4/6)

Example 3:

Show that $\lim _{x \rightarrow 0} f(x)$ is doesn't exist, where $f(x)=\frac{|x|}{x}$

$$
f(x)=\left\{\begin{aligned}
1, & x>0 \\
-1, & x<0
\end{aligned}\right.
$$

$$
|x|=\left\{\begin{array}{rr}
x, & x \geq 0 \\
-x, & x<0
\end{array}\right.
$$

One-Sided Limits (4/6)

كلية الحاسبات والذكاء الإصطناعي

Example 3:
$f(x)=\left\{\begin{aligned} 1, & x>0 \\ -1, & x<0\end{aligned}\right.$

One-Sided Limits (4/6)

كلية الحاسبات والذكاء الإصطناعي

Example 3:

$$
f(x)=\left\{\begin{aligned}
1, & x>0 \\
-1, & x<0
\end{aligned}\right.
$$

$$
\lim _{x \rightarrow 0^{-}} f(x)=-1 \quad \text { and }
$$

$$
\lim _{x \rightarrow 0^{+}} f(x)=1 \quad \text { then }
$$

$\lim _{x \rightarrow 0} f(x)$ is doesn't exist

One-Sided Limits (5/6)

Example 4:
For the function f graphed in the accompanying figure,

Find
a) $\lim _{x \rightarrow 2^{-}} f(x)$

One-Sided Limits (5/6)

Example 4:
For the function f graphed in the accompanying figure,

Find
a) $\lim _{x \rightarrow 2^{-}} f(x)$
$=2$

One-Sided Limits (5/6)

Example 4:
For the function f graphed in the accompanying figure,

Find
b) $\lim _{x \rightarrow 2^{+}} f(x)$

One-Sided Limits (5/6)

Example 4:
For the function f graphed in the accompanying figure,

Find
b) $\lim _{x \rightarrow 2^{+}} f(x)$
$=0$

One-Sided Limits (5/6)

Example 4:
For the function f graphed in the accompanying figure,

Find
c) $\lim _{x \rightarrow 2} f(x)$

One-Sided Limits (5/6)

Example 4:
For the function f graphed in the accompanying figure,

Find
c) $\lim _{x \rightarrow 2} f(x)$
$=$ doesn't exist

One-Sided Limits (5/6)

Example 4:
For the function f graphed in the accompanying figure,

Find
d) $f(2)$

One-Sided Limits (5/6)

Example 4:
For the function f graphed in the accompanying figure,

Find
d) $f(2)$
$=2$

One-Sided Limits (6/6)

Example 5:

For the function f graphed in the accompanying figure,

Find
a) $\lim _{x \rightarrow 0^{+}} f(x)$

One-Sided Limits (6/6)

Example 5:

For the function f graphed in the accompanying figure,

Find
a) $\lim _{x \rightarrow 0^{+}} f(x)$
$=1$

One-Sided Limits (6/6)

Example 5:

For the function f graphed in the accompanying figure,

Find
b) $\lim _{x \rightarrow 0^{-}} f(x)$

One-Sided Limits (6/6)

Example 5:

For the function f graphed in the accompanying figure,

Find
b) $\lim _{x \rightarrow 0^{-}} f(x)$
do not exist

One-Sided Limits (6/6)

Example 5:

For the function f graphed in the accompanying figure,

Find
c) $\lim _{x \rightarrow 2^{+}} f(x)$

One-Sided Limits (6/6)

كلية الحاسبات والذكاء الإصطناعي

Example 5:

For the function f graphed in the accompanying figure,

> Find
> c) $\lim _{x \rightarrow 2^{+}} f(x)$
> $=1$

One-Sided Limits (6/6)

Example 5:

For the function f graphed in the accompanying figure,

Find
c) $\lim _{x \rightarrow 2^{-}} f(x)$

One-Sided Limits (6/6)

Example 5:

For the function f graphed in the accompanying figure,

Find
c) $\lim _{x \rightarrow 2^{-}} f(x)$
$=1$

One-Sided Limits (6/6)

Example 5:

For the function f graphed in the accompanying figure,

Find
c) $\lim _{x \rightarrow 2} f(x)$

One-Sided Limits (6/6)

Example 5:

For the function f graphed in the accompanying figure,

Find
c) $\lim _{x \rightarrow 2} f(x)$
$=1$

One-Sided Limits (6/6)

Example 5:

For the function f graphed in the accompanying figure,

Find
d) $f(2)$

One-Sided Limits (6/6)

Example 5:

For the function f graphed in the accompanying figure,

Example 5:

Find
For the function f graphed in the accompanying figure,
d) $f(2)$
$=2$
Find
d) $f(2)$
$=2$

Finding Limit (1/7)

Special Trigonometric Limits (1/3)

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

Finding Limit (1/7)

Special Trigonometric Limits (2/3)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \\
& \cos x \leq \frac{\sin x}{x} \leq 1
\end{aligned}
$$

Finding Limit (1/7)

كلية الحاسبات والذكاء الإصطناعي

Special Trigonometric Limits (3/3)

$\sin x$
 $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$

If a, b are constants $\lim _{x \rightarrow 0} \frac{\sin a x}{b x}=\frac{a}{b}$

Calculus

Finding Limit (2/7)

Example 1: Evaluate the following limit (1/2)

$\sin 5 x$
 lim
 $x \rightarrow 0 \quad x$

If a, b are constants

$$
\lim _{x \rightarrow 0} \frac{\sin a x}{b x}=\frac{a}{b}
$$

Finding Limit (2/7)

كلية الحاسبات والذكاء الإصطناعي

Example 1: Evaluate the following limit (2/2)

$$
\lim _{x \rightarrow 0} \frac{\sin 5 x}{x}=5 \cdot\left(\lim _{x \rightarrow 0} \frac{\sin 5 x}{5 x}\right)=5 \cdot 1=5
$$

If a, b are constants

$$
\lim _{x \rightarrow 0} \frac{\sin a x}{b x}=\frac{a}{b}
$$

Finding Limit (3/7)

Example 2: Evaluate the following limit (1/2)

$\sin x$
$\lim _{x \rightarrow 0} \frac{}{5 x}$

If a, b are constants $\lim _{x \rightarrow 0} \frac{\sin a x}{b x}=\frac{a}{b}$

Finding Limit (3/7)

كلية الحاسبات والذكاء الإصطناعي

Example 2: Evaluate the following limit (2/2)
$\lim _{x \rightarrow 0} \frac{\sin x}{5 x}=\frac{1}{5} \cdot\left(\lim _{x \rightarrow 0} \frac{\sin x}{x}\right)=\frac{1}{5} \cdot 1=\frac{1}{5}$

If a, b are constants

$$
\lim _{x \rightarrow 0} \frac{\sin a x}{b x}=\frac{a}{b}
$$

Finding Limit (4/7)

كلية الحاسبات والذكاء الإصطناعي

Special Trigonometric Limits

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\tan x}{x}=1 \\
& \begin{aligned}
=\lim _{x \rightarrow 0} \frac{\sin x}{x \cos x} & =\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \lim _{x \rightarrow 0} \frac{1}{\cos x} \\
& =1 \cdot 1=1
\end{aligned}
\end{aligned}
$$

Finding Limit (5/7)

Special Trigonometric Limits

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0
$$

Multiplying by the conjugate

Finding Limit (6/7)

كلية الحاسبات والذكاء الإصطناعي

Oscillating Behavior (1/3):

Find $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ if it exists.

Finding Limit (6/7)

Oscillating Behavior (2/3):

Find $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ if it exists.

$\lim _{x \rightarrow 0} \sin \frac{1}{x}$ doesn't exist:
$f(x)$ oscillates between two
fixed values $\{1,-1\}$ as x approaches 0 .

Finding Limit (6/7)

Oscillating Behavior (3/3):
$\lim _{x \rightarrow 0} \sin (\pi / x)$ does not exist. $x \rightarrow 0$

Finding Limit (7/7)

كلية الحاسبات والذكاء الإصطناعي

Unbounded Behavior (1/4):

Find $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$ if it exists.

Finding Limit (7/7)

Unbounded Behavior (2/4):

Limit doesn't exist

Find $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$ if it exists.

x	$\frac{1}{x^{2}}$
± 1	1
± 0.5	4
± 0.2	25
± 0.1	100
± 0.05	400
± 0.01	10,000
± 0.001	$1,000,000$

Finding Limit (7/7)

Unbounded Behavior (3/4):

Limit doesn't exist

Find $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$ if it exists.

x	$\frac{1}{x^{2}}$
± 1	1
± 0.5	4
± 0.2	25
± 0.1	100
± 0.05	400
± 0.01	10,000
± 0.001	$1,000,000$

You can see that as x approaches 0 from either the right or the left, $f(x)$ increases without bound.

Because $f(x)$ does not become arbitrarily close to a single number L as x approaches 0 , you can conclude that the limit does not exist.

Finding Limit (7/7)

Unbounded Behavior (4/4):

Limit doesn't exist

Find $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$ if it exists.
To indicate the kind of behavior exhibited in this example, we use the notation

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty
$$

Infinite Limits (1/6)

كلية الحاسبات والذكاء الإصطناعي

Definition (1/2):

Let f be a function defined on both sides of a, except possibly at a itself. Then

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

means that the values of $f(x)$ can be made arbitrarily large (as large as we please) by taking x sufficiently close to a, but not equal to a.

Infinite Limits (1/6)

كلية الحاسبات والذكاء الإصطناعي

Definition (2/2):

Let f be a function defined on both sides of a, except possibly at a itself. Then

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

means that the values of $f(x)$ can be

$$
x=a
$$ made arbitrarily large negative by taking x sufficiently close to a, but not equal to a.

Infinite Limits (2/6)

كلية الحاسبات والذكاء الإصطناعي

One-Sided (1/2):

(a) $\lim _{x \rightarrow a^{-}} f(x)=\infty$
(b) $\lim _{x \rightarrow a^{+}} f(x)=\infty$

Infinite Limits (2/6)

One-Sided (2/2):

(c) $\lim _{x \rightarrow a^{-}} f(x)=-\infty$
(d) $\lim _{x \rightarrow a^{+}} f(x)=-\infty$

Infinite Limits (3/6)

كلية الحاسبات والذكاء الإصطناعي

Infinite Limits (4/6)

Example 1:

Find $\lim _{x \rightarrow-2} f(x)$, where

$$
f(x)=\frac{3 x+2}{2 x+4}
$$


```
x approaches -2 from left
```

x approaches -2 from right

\boldsymbol{x}	-2.1	-2.01	-2.001	-2.0001	-1.9999	-1.999	-1.99	-1.9
$\boldsymbol{f}(\boldsymbol{x})$	21.5	201.5	2001.5	$20,001.5$	$-19,998.5$	-1998.5	-198.5	-18.5

Infinite Limits (4/6)

كلية الحاسبات والذكاء الإصطناعي

Example 1:

Find $\lim _{x \rightarrow-2} f(x)$, where
$f(x)=\frac{3 x+2}{2 x+4}$

Infinite Limits (4/6)

كلية الحاسبات والذكاء الإصطناعي

Example 1:

Find $\lim _{x \rightarrow-2} f(x)$, where

$$
f(x)=\frac{3 x+2}{2 x+4}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{-}} f(x)=\infty \\
& \lim _{x \rightarrow-2^{+}} f(x)=-\infty
\end{aligned}
$$

$\lim \frac{3 x+2}{2 x+4}$ does not exist. $\lim _{x \rightarrow-2} 2 x+4$

Infinite Limits (5/6)

Example 2:

Find $\lim \tan x$.

$$
x \rightarrow \pi / 2
$$

Infinite Limits (5/6)

Example 2:

Find $\lim \tan x$. $x \rightarrow \pi / 2$

Infinite Limits (5/6)

Example 2:

Find $\lim \tan x$.

$$
x \rightarrow \pi / 2
$$

$\lim _{x \rightarrow \pi / 2^{-}} \tan x=+\infty \quad$ and
$\lim \tan x=-\infty$ $x \rightarrow \pi / 2^{+}$
$\lim \tan x$ is doesn't exist $x \rightarrow \pi / 2$

Infinite Limits (6/6)

Example 3:
Find $\lim _{x \rightarrow 0^{+}} \ln x$.

Infinite Limits (6/6)

Example 3:
Find $\lim _{x \rightarrow 0^{+}} \ln x$.

Infinite Limits (6/6)

كلية الحاسبات والذكاء الإصطناعي
Example 3:
Find $\lim _{x \rightarrow 0^{+}} \ln x$.
$\lim _{x \rightarrow 0^{+}} \ln x=-\infty$

Continuity (1/5)

Definition:

A function f is continuous at a number \boldsymbol{a} if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Continuity (2/5)

Definition:

A function f is continuous at a number \boldsymbol{a} if
$\lim _{x \rightarrow a} f(x)=f(a)$

1. $f(a)$ is defined (that is, a is in the domain of f),
2. $\lim _{x \rightarrow a} f(x)$ exists,
3. $\lim _{x \rightarrow a} f(x)=f(a)$.

Continuity (3/5)

f is not continuous at $x=c$

Continuity (3/5)

f is not continuous at $\boldsymbol{x}=\boldsymbol{c}$

Continuity (3/5)

f is not continuous at $\boldsymbol{x}=\boldsymbol{c}$

Continuity (3/5)

f is not continuous at $x=a$
4

If the graph of a function f has

a vertical asymptote at $x=a$, then f is not continuous at a.

a infinte

Continuity (4/5)

كلية الحاسبات والذكاء الإصطناعي

Example 1:

Is the following functions discontinuous?
$f(x)=\frac{x^{2}-x-2}{x-2}$

Continuity (4/5)

Example 1:

Is the following functions discontinuous?
$f(x)=\frac{x^{2}-x-2}{x-2}$
Notice that $f(2)$ is not defined, so f is discontinuous at $x=2$.

Continuity (4/5)

Example 1:

Is the following functions discontinuous?
$f(x)=\frac{x^{2}-x-2}{x-2}$
Notice that $f(2)$ is not defined, so f is discontinuous at $x=2$.

Continuity (5/5)

كلية الحاسبات والذكاء الإصطناعي

Example 2:

Is the following functions discontinuous?
$f(x)= \begin{cases}\frac{1}{x^{2}} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}$

Continuity (5/5)

كلية الحاسبات والذكاء الإصطناعي

Example 2:

Is the following functions discontinuous?
$f(x)=\left\{\left.\begin{array}{ll}\frac{1}{x^{2}} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{array} \quad \right\rvert\, \begin{array}{l}y \uparrow \\ 0\end{array}\right.$

Continuity (5/5)

Example 2:

Is the following functions discontinuous?
$f(x)=\left\{\begin{array}{cl}\frac{1}{x^{2}} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{array}\right.$
f is discontinuous at $x=0$.
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{1}{x^{2}}$ does not exist.

Video Lectures

All Lectures: hitps://www.youtube.com/playlist?list=PLxlvc-MEDsBggKEl PPAVJpebKDLo-ijEC

Lecture \#4: https://www.youtube.com/watch?v=yywflue84zEE\&list=PLxlvcMEDsEgkSI PPAVJpebKDLo-ijEC马index=5

Thank You

Dr. Ahmed Hagag
ahagag@fci.bu.edu.eg

