

Calculus

Lecture 04

Dr. Ahmed Hagag

Faculty of Computers and Artificial Intelligence Benha University

Spring 2023

Course Syllabus

Chapter 1: Numbers, Sets, and Functions.

- Chapter 2: Limits and Continuity.
- Chapter 3: Derivatives and Differentiation Rules.
- Chapter 4: Applications of Differentiation.
- > Chapter 5: Integrals.
- > Chapter 6: Techniques of Integration.
- > Chapter 7: Applications of Definite Integrals.

Chapter 2 Topics

- Definition of Limit.
- Finding Limits Graphically and Numerically.
- Limit Laws.
- One-Sided Limits.
- Infinite Limits.
- Continuity.

Definition of Limit (1/8)

• The limit is one of the tools that we use to describe the behavior of a function as the values of *x* approach, or become **closer and closer** to, some **particular number**.

Definition of Limit (2/8)

How does the function

$$f(x) = \frac{x^2 - 1}{x - 1}$$

behave near x = 1?

Definition of Limit (3/8)

How does the function

$$D(f) = \mathbb{R} - \{1\}$$

behave near
$$x = 1$$
?

we can simplify the formula by factoring the numerator and canceling common factors:

 $f(x) = \frac{x^2 - 1}{x - 1}$

$$f(x) = \frac{(x-1)(x+1)}{x-1} = x+1$$
 for $x \neq 1$

Definition of Limit (3/8)

How does the function

$$D(f) = \mathbb{R} - \{1\}$$

$$f(x) = \frac{x^2 - 1}{x - 1} = x + 1$$
 for $x \neq 1$

©Ahmed Hagag

Definition of Limit (4/8)

Definition of Limit (4/8)

How does the function

$$D(f) = \mathbb{R} - \{1\}$$

$$f(x) = \frac{x^2 - 1}{x - 1} = x + 1$$
 for $x \neq 1$

We would say that f(x) approaches the limit 2 as x approaches 1, and write

$$\lim_{x \to 1} f(x) = 2, \quad \text{or} \quad \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$

Definition:

• Suppose f(x) is defined when x is near the number a. (This means that f is defined on some open interval that contains a, except possibly at a itself.) Then we write

$$\lim_{x \to a} f(x) = L$$

"the limit of f(x), as x approaches a, equals L"

Definition of Limit (6/8)

Definition of Limit (7/8)

Definition of Limit (8/8)

Example 1 (1/2):

• What happens to $f(x) = x^2 - x + 2$ when x is a number very close to (but not equal to) 2 ?

x	f(x)	x	f(x)
1.0	2.000000	3.0	8.000000
1.5	2.750000	2.5	5.750000
1.8	3.440000	2.2	4.640000
1.9	3.710000	2.1	4.310000
1.95	3.852500	2.05	4.152500
1.99	3.970100	2.01	4.030100
1.995	3.985025	2.005	4.015025
1.999	3.997001	2.001	4.003001

Example 1 (2/2):

• What happens to $f(x) = x^2 - x + 2$ when x is a number very close to (but not equal to) 2 ?

Example 2 (1/4):

• What happens to g(x) =

$$=\frac{x^3-2x^2}{x-2}$$
 when x is 2?

Example 2 (2/4):

• What happens to $g(x) = \frac{x^3 - 2x^2}{x - 2}$ when x is 2?

The function g(x) is undefined when x = 2, since the value x = 2 makes the denominator 0.

Example 2 (3/4):

• What happens to $g(x) = \frac{x^3 - 2x^2}{x - 2}$ when x is 2?

$$\lim_{x \to 2} g(x) = 4$$

Example 2 (4/4):

• What happens to $g(x) = \frac{x^3 - 2x^2}{x - 2}$ when x is 2?

Example 3:

Determine $\lim_{x\to 2} h(x)$ for the function *h* defined by

 $\varepsilon - \delta$ Definition of Limit (1/2)

©Ahmed Hagag

كلية الحاسبات والذكاء الإصطناعي

$\varepsilon - \delta$ Definition of Limit (2/2)

Let f be a function defined on an open interval containing c (except possibly at c), and let L be a real number. The statement

 $\lim_{x \to c} f(x) = L$

means that for each $\varepsilon > 0$ there exists a $\delta > 0$ such that if

 $0 < |x - c| < \delta$

then

$$|f(x)-L|<\varepsilon.$$

The Precise Definition of a limit

Limit Laws (1/20)

Suppose that c is a constant and the limits

$$\lim_{x \to a} f(x) \quad \text{and} \quad \lim_{x \to a} g(x) \quad \text{exist. Then}$$

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} \left[cf(x) \right] = c \lim_{x \to a} f(x)$$

4.
$$\lim_{x \to a} \left[f(x) g(x) \right] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{if } \lim_{x \to a} g(x) \neq 0$$

©Ahmed Hagag

كلية الحاسبات والذكاء الإصطناعي

Rules for Limits

Limit Laws (2/20)

- 6. $\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$
- 7. $\lim_{x \to a} c = c$

where *n* is a positive integer

- 8. $\lim_{x \to a} x = a$
- 9. $\lim_{x \to a} x^n = a^n$ where *n* is a positive integer
- 10. $\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$ where *n* is a positive integer (If *n* is even, we assume that a > 0.)

11. $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$ where *n* is a positive integer

 $\left[\text{If } n \text{ is even, we assume that } \lim_{x \to a} f(x) > 0. \right]$

Limit Laws (3/20)

Example 1: Evaluate the following limit (1/2)

$$\lim_{x \to 5} (2x^2 - 3x + 4)$$

Limit Laws (3/20)

Example 1: Evaluate the following limit (2/2)

$$\lim_{x \to 5} (2x^2 - 3x + 4)$$

= $\lim_{x \to 5} (2x^2) - \lim_{x \to 5} (3x) + \lim_{x \to 5} 4$
= $2 \lim_{x \to 5} x^2 - 3 \lim_{x \to 5} x + \lim_{x \to 5} 4$
= $2(5^2) - 3(5) + 4$
= 39

©Ahmed Hagag

Limit Laws (4/20)

Example 2: Evaluate the following limit (1/2)

$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$

Limit Laws (4/20)

Example 2: Evaluate the following limit (2/2)

 $\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x} = \frac{\lim_{x \to -2} (x^3 + 2x^2 - 1)}{\lim_{x \to -2} (5 - 3x)}$ $=\frac{\lim_{x \to -2} x^3 + 2 \lim_{x \to -2} x^2 - \lim_{x \to -2} 1}{\lim_{x \to -2} 5 - 3 \lim_{x \to -2} x}$ $=\frac{(-2)^3+2(-2)^2-1}{5-3(-2)}$ $=-\frac{1}{11}$

©Ahmed Hagag

Limit Laws (5/20)

Limits of Polynomial and Rational Function

Limit of a Polynomial Function Let p(x) be a polynomial function, *a* any real number. Then,

$$\lim_{x \to a} p(x) = p(a)$$

Limit of a Rational Function Let r(x) = p(x)/q(x) be a rational function, where p(x) and q(x) are polynomials. Let *a* any real number such that $q(a) \neq 0$. Then,

$$\lim_{x \to a} r(x) = r(a)$$

Limit Laws (6/20)

Recall: Example 1: Evaluate the following limit

$$\lim_{x \to 5} (2x^2 - 3x + 4)$$

$$= 2(5^2) - 3(5) + 4$$

= 39

Limit Laws (7/20)

Recall: Example 2: Evaluate the following limit

$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$

$$=\frac{(-2)^3+2(-2)^2-1}{5-3(-2)}$$

$$=-\frac{1}{11}$$

Limit Laws (8/20)

The Limit of a Function Involving a Radical

Let *n* be a positive integer. The limit below is valid for all *a* when *n* is odd, and is valid for a > 0 when *n* is even.

$$\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$$

Limit Laws (9/20)

Example 4: Evaluate the following limit (1/2)

$$\lim_{x \to 3} \frac{x^2 - x - 1}{\sqrt{x+1}}$$

Limit Laws (9/20)

Example 4: Evaluate the following limit (2/2)

 $\lim_{x \to 3} \frac{x^2 - x - 1}{\sqrt{x + 1}} = \frac{\lim_{x \to 3} (x^2 - x - 1)}{\lim_{x \to 3} \sqrt{x + 1}}$ $r \rightarrow 3$ $= \frac{\lim_{x \to 3} (x^2 - x - 1)}{\sqrt{\lim_{x \to 3} (x + 1)}}$ $=\frac{3^2-3-1}{\sqrt{3}+1}$

Limits of Trigonometric Functions

Let *a* be a real number in the domain of the given trigonometric function.

```
\lim_{x \to a} \sin x = \sin a \qquad \lim_{x \to a} \cos x = \cos a\lim_{x \to a} \tan x = \tan a \qquad \lim_{x \to a} \cot x = \cot a\lim_{x \to a} \sec x = \sec a \qquad \lim_{x \to a} \csc x = \csc a
```


Limit Laws (11/20)

Limits of Trigonometric Functions (Examples)

- **a.** $\lim_{x \to 0} \tan x = \tan(0) = 0$
- **b.** $\lim_{x \to \pi} (x \cos x) = \left(\lim_{x \to \pi} x\right) \left(\lim_{x \to \pi} \cos x\right) = \pi \cos(\pi) = -\pi$
- c. $\lim_{x \to 0} \sin^2 x = \lim_{x \to 0} (\sin x)^2 = 0^2 = 0$

Example 5: Evaluate the following limit (1/3)

Example 5: Evaluate the following limit (2/3)

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \frac{0}{0}$$

Undetermined (Indeterminate) values

Determined values

$\infty + \infty = \infty - \infty - \infty = -\alpha$	$\circ 0^{\infty} = 0$	$0^{-\infty} = \infty$	$\infty \cdot \infty = \infty$
--	------------------------	------------------------	--------------------------------

Example 5: Evaluate the following limit (2/3)

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \frac{0}{0}$$

Dividing Out Technique

Example 5: Evaluate the following limit (3/3)

Example 6: Evaluate the following limit (1/4)

$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$$

Example 6: Evaluate the following limit (2/4)

$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = \frac{0}{0} = \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{x - 1}$$
$$= \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{(x - 1)}$$
$$= \lim_{x \to 1} (x^2 + x + 1)$$
$$= 1^2 + 1 + 1$$
$$= 3$$

Example 6: Evaluate the following limit (3/4)

Example 6: Evaluate the following limit (4/4)

$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = 3$$

Example 7: Evaluate the following limit (1/4)

$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} = \frac{0}{0}$$

Example 7: Evaluate the following limit (2/4)

$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} = \frac{0}{0}$$

Multiplying by the conjugate

Example 7: Evaluate the following limit (3/4)

$$\lim_{x \to 4} \frac{\sqrt{x-2}}{x-4} = \frac{0}{0}$$

Multiplying by the conjugate

$$\frac{\sqrt{x}-2}{x-4} \cdot \frac{\sqrt{x}+2}{\sqrt{x}+2} = \frac{(\sqrt{x})^2 - 2^2}{(x-4)(\sqrt{x}+2)}$$
$$= \frac{x-4}{(x-4)(\sqrt{x}+2)} = \frac{1}{\sqrt{x}+2}$$

Example 7: Evaluate the following limit (4/4)

$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} = \frac{1}{4}$$

Multiplying by the conjugate

$$\lim_{x \to 4} \frac{1}{\sqrt{x} + 2} = \frac{1}{\sqrt{4} + 2} = \frac{1}{2 + 2} = \frac{1}{4}$$

Example 8: Evaluate the following limit (1/5)

Example 8: Evaluate the following limit (2/5)

Example 8: Evaluate the following limit (3/5)

Example 8: Evaluate the following limit (4/5)

Example 8: Evaluate the following limit (5/5)

The Squeeze (Sandwich/Pinching) Theorem (1/2)

If $h(x) \le f(x) \le g(x)$

when x is near a (except possibly at a) and

$$= \lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$$

Then

$$\lim_{x \to a} f(x) = L$$

©Ahmed Hagag

Example 1:

Given that

$$1 - \frac{x^2}{4} \le u(x) \le 1 + \frac{x^2}{2} \quad \text{for all } x \ne 0$$

find $\lim_{x\to 0} u(x)$, no matter how complicated u is.

Example 1:
$$1 - \frac{x^2}{4} \le u(x) \le 1 + \frac{x^2}{2}$$
 for all $x \ne 0$
Since

$$\lim_{x \to 0} \left(1 - \left(\frac{x^2}{4} \right) \right) = 1 \quad \text{and} \quad \lim_{x \to 0} \left(1 + \left(\frac{x^2}{2} \right) \right) = 1$$

the Squeeze Theorem implies that $\lim_{x\to 0} u(x) = 1$

Example 1:

كلية الحاسبات والذكاء الإصطناعي

Example 2:

Using the Sandwich Theorem:

If
$$\sqrt{5 - 2x^2} \le f(x) \le \sqrt{5 - x^2}$$
 for $-1 \le x \le 1$, *find* $\lim_{x\to 0} f(x)$.

Limit Laws (20/20)

Example 2:

If $\sqrt{5-2x^2} \le f(x) \le \sqrt{5-x^2}$ for $-1 \le x \le 1$,

Since

$$\lim_{x \to 0} \sqrt{5 - 2x^2} = \sqrt{5 - 2(0)^2} = \sqrt{5}$$
$$\lim_{x \to 0} \sqrt{5 - x^2} = \sqrt{5 - (0)^2} = \sqrt{5},$$

then by the sandwich theorem, $\lim_{x\to 0} f(x) = \sqrt{5}$.

Definitions (1/4):

We write

$$\lim_{x \to a^-} f(x) = L$$

and say the **left-hand limit** of f(x) as x approaches a [or the limit of f(x) as x approaches a from the **left**] is equal to L if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a with x less than a.

Definitions (2/4):

We write

$$\lim_{x \to a^+} f(x) = L$$

and say the **right-hand limit** of f(x) as x approaches a [or the limit of f(x) as x approaches a from the **right**] is equal to L if we can make the values of f(x) arbitrarily close to Lby taking x to be sufficiently close to a with x greater than a.

Definitions (3/4):

Definitions (4/4):

We see that

$$\lim_{x \to a} f(x) = L \quad \text{if and only if}$$

$$\lim_{x \to a^{-}} f(x) = L \quad \text{and} \quad \lim_{x \to a^{+}} f(x) = L$$

Example 1:

Show that $\lim_{x\to 0} f(x)$ is exist, where f(x) = |x|.

Example 1:

Show that $\lim_{x\to 0} f(x)$ is exist, where f(x) = |x|.

$$\lim_{x \to 0^{-}} f(x) = 0 \text{ and}$$
$$\lim_{x \to 0^{+}} f(x) = 0 \text{ then}$$
$$\lim_{x \to 0} f(x) = 0$$

Example 2:

Show that $\lim_{x\to 0} f(x)$ is doesn't exist, where

$$f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

Example 2:

Show that $\lim_{x\to 0} f(x)$ is doesn't exist, where

Example 2:

Show that $\lim_{x\to 0} f(x)$ is doesn't exist, where $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$ $\lim_{x \to 0^-} f(x) = 0 \quad \text{and} \quad$ $\lim_{x \to 0^+} f(x) = 1 \quad \text{then}$ $\lim_{x \to 0} f(x)$ is doesn't exist 0 t

Example 3:

Show that $\lim_{x \to 0} f(x)$ is doesn't exist, where $f(x) = \frac{|x|}{x}$

Example 3:

Show that $\lim_{x \to 0} f(x)$ is doesn't exist, where $f(x) = \frac{|x|}{x}$

$$f(x) = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases} \quad |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Example 3:

$$f(x) = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases}$$

©Ahmed Hagag

Example 3:

$$f(x) = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases}$$

$$\lim_{x \to 0^-} f(x) = -1 \quad \text{and} \quad$$

$$\lim_{x \to 0^+} f(x) = 1 \quad \text{then}$$

$$\lim_{x \to 0} f(x) \text{ is doesn't exist}$$

Example 4:

For the function f graphed in the accompanying figure,

Example 4:

Example 4:

Example 4:

Example 4:

For the function f graphed in the accompanying figure,

 $\frac{\text{Find}}{c} \lim_{x \to 2} f(x)$

Example 4:

Example 4:

For the function f graphed in the accompanying figure,

<u>Find</u> d) *f*(2)

Example 4:

For the function f graphed in the accompanying figure,

<u>Find</u> d) *f*(2) = 2

Example 5:

For the function f graphed in the accompanying figure,

Example 5:

For the function f graphed in the accompanying figure,

Example 5:

For the function f graphed in the accompanying figure,

Example 5:

For the function f graphed in the accompanying figure,

Example 5:

For the function f graphed in the accompanying figure,

Example 5:

For the function f graphed in the accompanying figure,

Example 5:

For the function f graphed in the accompanying figure,

Example 5:

For the function f graphed in the accompanying figure,

Example 5:

For the function f graphed in the accompanying figure,

Example 5:

For the function f graphed in the accompanying figure,

Example 5:

For the function f graphed in the accompanying figure,

<u>Find</u> d) *f*(2)

Example 5:

For the function f graphed in the accompanying figure,

Example 5:

For the function f graphed in the accompanying figure,

 $\frac{\text{Find}}{d} f(2) = 2$

<u>Find</u> d) *f*(2) = 2

Finding Limit (1/7)

Special Trigonometric Limits (1/3)

X

sin x

X

Finding Limit (1/7)

Special Trigonometric Limits (2/3)

Finding Limit (1/7)

Special Trigonometric Limits (3/3)

Finding Limit (2/7)

Example 1: Evaluate the following limit (1/2)

 $\lim_{x \to 0} \frac{\sin 5x}{x}$

If a, b are constants $\lim_{x \to 0} \frac{\sin ax}{bx} = \frac{a}{b}$

Finding Limit (2/7)

Example 1: Evaluate the following limit (2/2)

$$\lim_{x \to 0} \frac{\sin 5x}{x} = 5 \cdot \left(\lim_{x \to 0} \frac{\sin 5x}{5x} \right) = 5 \cdot 1 = 5$$

If
$$a, b$$
 are constants
$$\lim_{x \to 0} \frac{\sin ax}{bx} = \frac{a}{b}$$

Finding Limit (3/7)

Example 2: Evaluate the following limit (1/2)

 $\lim_{x \to 0} \frac{\sin x}{5x}$

If a, b are constants $\lim_{x \to 0} \frac{\sin ax}{bx} = \frac{a}{b}$

Finding Limit (3/7)

Example 2: Evaluate the following limit (2/2)

$$\lim_{x \to 0} \frac{\sin x}{5x} = \frac{1}{5} \cdot \left(\lim_{x \to 0} \frac{\sin x}{x} \right) = \frac{1}{5} \cdot 1 = \frac{1}{5}$$

If a, b are constants $\lim_{x \to 0} \frac{\sin ax}{bx} = \frac{a}{b}$

Finding Limit (4/7)

Special Trigonometric Limits

 $\lim_{x \to 0} \frac{\tan x}{x} = 1$

$$= \lim_{x \to 0} \frac{\sin x}{x \cos x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x}$$
$$= 1 \cdot 1 = 1$$

Finding Limit (5/7)

Special Trigonometric Limits

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

Multiplying by the conjugate

Finding Limit (6/7)

Oscillating Behavior (1/3):

Limit doesn't exist

Find $\lim_{x \to 0} \sin \frac{1}{x}$ if it exists.

Finding Limit (6/7)

Finding Limit (6/7)

Finding Limit (7/7)

Unbounded Behavior (1/4):

Limit doesn't exist

Find
$$\lim_{x \to 0} \frac{1}{x^2}$$
 if it exists.

Finding Limit (7/7)

Unbounded Behavior (2/4):

Find $\lim_{x \to 0} \frac{1}{x^2}$ if it exists.

x	$\frac{1}{x^2}$
±1	1
± 0.5	4
± 0.2	25
± 0.1	100
± 0.05	400
± 0.01	10,000
± 0.001	1,000,000

Limit doesn't exist

Finding Limit (7/7)

Unbounded Behavior (3/4):

Limit doesn't exist

Find $\lim_{x \to 0} \frac{1}{x^2}$ if it exists.

x	$\frac{1}{x^2}$
±1	1
± 0.5	4
± 0.2	25
± 0.1	100
± 0.05	400
± 0.01	10,000
± 0.001	1,000,000

You can see that as x approaches 0 from either the right or the left, f(x)increases without bound.

Because f(x) does not become arbitrarily close to a single number *L* as *x* approaches 0, you can conclude that the **limit does not exist**.

Finding Limit (7/7)

Unbounded Behavior (4/4):

Find
$$\lim_{x \to 0} \frac{1}{x^2}$$
 if it exists.

To indicate the kind of behavior exhibited in this example, we use the notation

$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$

Limit doesn't exist

Infinite Limits (1/6)

0

a

x = a

Definition (1/2):

Let f be a function defined on both sides of a, except possibly at a itself. Then

$$\lim_{x \to a} f(x) = \infty$$

means that the values of f(x) can be made arbitrarily large (as large as we please) by taking x sufficiently close to a, but not equal to a. y = f(x)

Infinite Limits (1/6)

Definition (2/2):

Let f be a function defined on both sides of a, except possibly at a itself. Then

$$\lim_{x \to a} f(x) = -\infty$$

means that the values of f(x) can be made arbitrarily large negative by taking x sufficiently close to a, but not equal to

а.

 $\mathbf{v} = f(\mathbf{x})$

х

x = a

a

Infinite Limits (2/6)

One-Sided (1/2):

Calculus

Infinite Limits (2/6)

One-Sided (2/2):

Infinite Limits (3/6)

Infinite Limits (4/6)

Example 1:

©Ahmed Hagag

Calculus

Example 1:

كلية الحاسبات والذكاء الإصطناعي

Find $\lim_{x \to -2} f(x)$, where

$$f(x) = \frac{3x+2}{2x+4}$$

$$y = \frac{3x+2}{2x+4}$$

$$y = \frac{3x+2}{2x+4}$$

$$y = \frac{3}{2}$$

$$x = -2$$

$$x = -2$$

$$\frac{3x+2}{2x+4}$$

$$y = \frac{3}{2}$$

$$\lim_{x \to -2^{-}} f(x) = \infty.$$
$$\lim_{x \to -2^{+}} f(x) = -\infty,$$

©Ahmed Hagag

Infinite Limits (5/6)

Example 2:

Find $\lim_{x \to \pi/2} \tan x$.

Infinite Limits (5/6)

Example 2:

Find $\lim_{x \to \pi/2} \tan x$.

Infinite Limits (5/6)

Example 2:

Infinite Limits (6/6)

Example 3:

Find $\lim_{x\to 0^+} \ln x$.

Infinite Limits (6/6)

Example 3:

Find $\lim_{x\to 0^+} \ln x$.

Calculus

Infinite Limits (6/6)

Example 3:

Calculus

Definition:

A function f is **continuous at a number** a if $\lim_{x \to a} f(x) = f(a)$ $y \uparrow f(x)$ f(x) f(a) - - f(a)

Definition:

A function f is **continuous at a number** a if $\lim_{x \to a} f(x) = f(a)$

- 1. f(a) is defined (that is, a is in the domain of f),
- 2. $\lim_{x \to a} f(x)$ exists,

3.
$$\lim_{x \to a} f(x) = f(a).$$

©Ahmed Hagag

Calculus

f is not continuous at x = a

Example 1:

Is the following functions discontinuous?

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

Example 1:

Is the following functions discontinuous?

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

Notice that f(2) is not defined,

so f is discontinuous at x = 2.

Example 1:

Is the following functions discontinuous?

$$f(x) = \frac{x^2 - x - 2}{x - 2}$$

Notice that f(2) is not defined,

so f is discontinuous at x = 2.

Example 2:

Is the following functions discontinuous?

$$f(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$$

Example 2:

Is the following functions discontinuous?

Example 2:

Is the following functions discontinuous?

$$f(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$$

f is discontinuous at x = 0. $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1}{x^2}$ does not exist.

Video Lectures

All Lectures: https://www.youtube.com/playlist?list=PLxlvc-MGDs6gkSl_PPAVJpebKDLo-ijEC

Lecture #4: <u>https://www.youtube.com/watch?v=yywfUe84z6E&list=PLxlvc-</u> <u>MGDs6gkSI_PPAVJpebKDLo-ijEC&index=5</u>

Thank You

Dr. Ahmed Hagag ahagag@fci.bu.edu.eg