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➢ Chapter 6: Techniques of Integration.
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Course Syllabus



• Definition of Limit.

• Finding Limits Graphically and Numerically.

• Limit Laws.

• One-Sided Limits.

• Infinite Limits.

• Continuity.
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Chapter 2 Topics



• The limit is one of the tools that we use to describe the 

behavior of a function as the values of 𝑥 approach, or 

become closer and closer to, some particular number.
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Definition of Limit (1/8)

Calculus



How does the function

𝑓 𝑥 =
𝑥2 − 1

𝑥 − 1

behave near 𝑥 = 1 ?
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Definition of Limit (2/8)

Calculus



How does the function

𝑓 𝑥 =
𝑥2 − 1

𝑥 − 1

behave near 𝑥 = 1 ?

we can simplify the formula by factoring the numerator and 

canceling common factors:

6©Ahmed Hagag

Definition of Limit (3/8)

Calculus

𝐷 𝑓 = ℝ − 1



How does the function

𝑓 𝑥 =
𝑥2 − 1

𝑥 − 1
= 𝑥 + 1 for 𝑥 ≠ 1
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Definition of Limit (3/8)

Calculus

𝐷 𝑓 = ℝ − 1



How does the function

𝑓 𝑥 =
𝑥2 − 1

𝑥 − 1
= 𝑥 + 1 for 𝑥 ≠ 1
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Definition of Limit (4/8)

Calculus

𝐷 𝑓 = ℝ − 1

𝒙 𝟎. 𝟗 𝟎. 𝟗𝟗 𝟎. 𝟗𝟗𝟗 𝟎. 𝟗𝟗𝟗𝟗 𝟏 𝟏. 𝟎𝟎𝟎𝟏 𝟏. 𝟎𝟎𝟏 𝟏. 𝟎𝟏 𝟏. 𝟏

𝒇(𝒙) 𝟏. 𝟗 𝟏. 𝟗𝟗 𝟏. 𝟗𝟗𝟗 𝟏. 𝟗𝟗𝟗𝟗 − 𝟐. 𝟎𝟎𝟎𝟏 𝟐. 𝟎𝟎𝟏 𝟐. 𝟎𝟏 𝟐. 𝟏

𝑓 𝑥 approaches to 2

𝑥 approaches to 1

𝑓 𝑥 approaches to 2

𝑥 approaches to 1



How does the function

𝑓 𝑥 =
𝑥2 − 1

𝑥 − 1
= 𝑥 + 1 for 𝑥 ≠ 1
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Definition of Limit (4/8)

Calculus

𝐷 𝑓 = ℝ − 1

We would say that 𝑓(𝑥) approaches the limit 2 as 𝑥
approaches 1, and write



Definition:

• Suppose 𝑓(𝑥) is defined when 𝑥 is near the number 𝑎. 

(This means that 𝑓 is defined on some open interval that 

contains 𝑎, except possibly at 𝑎 itself.) Then we write
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Definition of Limit (5/8)

Calculus



lim
𝑥→𝑎

𝑓(𝑥) = 𝐿

in all three cases
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Definition of Limit (6/8)

Calculus

Case 1
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Definition of Limit (7/8)

Calculus

Case 2

lim
𝑥→𝑎

𝑓(𝑥) = 𝐿

in all three cases
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Definition of Limit (8/8)

Calculus

Case 3

lim
𝑥→𝑎

𝑓(𝑥) = 𝐿

in all three cases



Example 1 (1/2):

• What happens to 𝑓 𝑥 = 𝑥2 − 𝑥 + 2 when 𝑥 is a number 

very close to (but not equal to) 2 ?

14©Ahmed Hagag

Finding Limits (1/3)

Calculus



Example 1 (2/2):

• What happens to 𝑓 𝑥 = 𝑥2 − 𝑥 + 2 when 𝑥 is a number 

very close to (but not equal to) 2 ?
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Finding Limits (1/3)

Calculus



Example 2 (1/4):

• What happens to                                 when 𝑥 is 2 ?
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Finding Limits (2/3)

Calculus



Example 2 (2/4):

• What happens to                                 when 𝑥 is 2 ?
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Finding Limits (2/3)

Calculus



Example 2 (3/4):

• What happens to                                 when 𝑥 is 2 ?
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Finding Limits (2/3)

Calculus



Example 2 (4/4):

• What happens to                                 when 𝑥 is 2 ?
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Finding Limits (2/3)

Calculus



Example 3:
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Finding Limits (3/3)

Calculus
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𝜺 − 𝜹 Definition of Limit (1/2)

Calculus
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𝜺 − 𝜹 Definition of Limit (2/2)

Calculus

The Precise Definition of a limit
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Limit Laws (1/20)

Calculus

Rules for Limits
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Limit Laws (2/20)

Calculus



Example 1: Evaluate the following limit (1/2)
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Limit Laws (3/20)

Calculus



Example 1: Evaluate the following limit (2/2)
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Limit Laws (3/20)

Calculus



Example 2: Evaluate the following limit (1/2)
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Limit Laws (4/20)

Calculus



Example 2: Evaluate the following limit (2/2)
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Limit Laws (4/20)

Calculus



Limits of Polynomial and Rational Function
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Limit Laws (5/20)

Calculus

Limit of a Polynomial Function Let 𝑝(𝑥) be a polynomial

function, 𝑎 any real number. Then,

lim
𝑥→𝑎

𝑝 𝑥 = 𝑝(𝑎)

Limit of a Rational Function Let 𝑟 𝑥 = 𝑝(𝑥)/𝑞(𝑥) be a rational

function, where 𝑝(𝑥) and 𝑞(𝑥) are polynomials. Let 𝑎 any real

number such that 𝑞(𝑎) ≠ 0. Then,

lim
𝑥→𝑎

𝑟 𝑥 = 𝑟(𝑎)



Recall: Example 1: Evaluate the following limit
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Limit Laws (6/20)

Calculus



Recall: Example 2: Evaluate the following limit
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Limit Laws (7/20)

Calculus



The Limit of a Function Involving a Radical
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Limit Laws (8/20)

Calculus

Let 𝑛 be a positive integer. The limit below is valid for all 𝑎 when

𝑛 is odd, and is valid for 𝑎 > 0 when 𝑛 is even.

lim
𝑥→𝑎

𝑛 𝑥 = 𝑛 𝑎



Example 4: Evaluate the following limit (1/2)
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Limit Laws (9/20)

Calculus



Example 4: Evaluate the following limit (2/2)
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Limit Laws (9/20)

Calculus



Limits of Trigonometric Functions
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Limit Laws (10/20)

Calculus

Let 𝑎 be a real number in the domain of the given trigonometric

function.

lim
𝑥→𝑎

sin 𝑥 = sin 𝑎 lim
𝑥→𝑎

cos 𝑥 = cos 𝑎

lim
𝑥→𝑎

tan 𝑥 = tan 𝑎 lim
𝑥→𝑎

cot 𝑥 = cot 𝑎

lim
𝑥→𝑎

sec 𝑥 = sec 𝑎 lim
𝑥→𝑎

csc 𝑥 = csc 𝑎



Limits of Trigonometric Functions (Examples)
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Limit Laws (11/20)

Calculus



Example 5: Evaluate the following limit (1/3)
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Limit Laws (12/20)

Calculus



Example 5: Evaluate the following limit (2/3)
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Limit Laws (12/20)

Calculus

=
0

0
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Undetermined Value

Calculus

Undetermined (Indeterminate) values

0

0

±∞

±∞
∞−∞ 0(∞) 00 1∞ ∞0

Determined values

∞+∞ = ∞ −∞−∞ = −∞ 0∞ = 0 0−∞ = ∞ ∞ ∙ ∞ = ∞



Example 5: Evaluate the following limit (2/3)
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Limit Laws (12/20)

Calculus

=
0

0
Dividing Out 

Technique



Example 5: Evaluate the following limit (3/3)

41©Ahmed Hagag

Limit Laws (12/20)

Calculus

= 2 Dividing Out 
Technique



Example 6: Evaluate the following limit (1/4)
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Limit Laws (13/20)

Calculus

lim
𝑥→1

𝑥3 − 1

𝑥 − 1



Example 6: Evaluate the following limit (2/4)
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Limit Laws (13/20)

Calculus

lim
𝑥→1

𝑥3 − 1

𝑥 − 1
=
0

0
→

→

→



Example 6: Evaluate the following limit (3/4)
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Limit Laws (13/20)

Calculus

lim
𝑥→1

𝑥3 − 1

𝑥 − 1 →

→

→

= 3



Example 6: Evaluate the following limit (4/4)
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Limit Laws (13/20)

Calculus

lim
𝑥→1

𝑥3 − 1

𝑥 − 1
= 3



Example 7: Evaluate the following limit (1/4)

46©Ahmed Hagag

Limit Laws (14/20)

Calculus

=
0

0



Example 7: Evaluate the following limit (2/4)

47©Ahmed Hagag

Limit Laws (14/20)

Calculus

Rationalizing 
Technique

Multiplying by the 

conjugate 

=
0

0



Example 7: Evaluate the following limit (3/4)
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Limit Laws (14/20)

Calculus

Rationalizing 
Technique

Multiplying by the 

conjugate 

=
0

0



Example 7: Evaluate the following limit (4/4)
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Limit Laws (14/20)

Calculus

Rationalizing 
Technique

Multiplying by the 

conjugate 

=
1

4



Example 8: Evaluate the following limit (1/5)
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Limit Laws (15/20)

Calculus

→



Example 8: Evaluate the following limit (2/5)
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Limit Laws (15/20)

Calculus

=
0

0→



Example 8: Evaluate the following limit (3/5)
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Limit Laws (15/20)

Calculus

→



Example 8: Evaluate the following limit (4/5)
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Limit Laws (15/20)

Calculus

→

→



Example 8: Evaluate the following limit (5/5)
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Limit Laws (15/20)

Calculus

→
=
1

2



The Squeeze (Sandwich/Pinching) Theorem (1/2)
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Limit Laws (16/20)

Calculus

If ℎ 𝑥 ≤ 𝑓 𝑥 ≤ 𝑔 𝑥

when 𝑥 is near 𝑎 (except possibly at 𝑎) and

= lim
𝑥→𝑎

𝑔(𝑥) = lim
𝑥→𝑎

ℎ 𝑥 = 𝐿

Then

lim
𝑥→𝑎

𝑓(𝑥) = 𝐿



The Squeeze (Sandwich/Pinching) Theorem (2/2)
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Limit Laws (16/20)

Calculus

ℎ 𝑥 ≤ 𝑓 𝑥 ≤ 𝑔(𝑥)



Example 1:
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Limit Laws (17/20)

Calculus



Example 1:
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Limit Laws (18/20)

Calculus



Example 1:
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Limit Laws (18/20)

Calculus



Example 2:
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Limit Laws (19/20)

Calculus



Example 2:
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Limit Laws (20/20)

Calculus



Definitions (1/4):

We write

lim
𝑥→𝑎−

𝑓(𝑥) = 𝐿

and say the left-hand limit of 𝑓(𝑥) as 𝑥 approaches 𝑎 [or 

the limit of 𝑓(𝑥)as 𝑥 approaches 𝑎 from the left] is equal to 

𝐿 if we can make the values of 𝑓(𝑥) arbitrarily close to 𝐿
by taking 𝑥 to be sufficiently close to 𝑎 with 𝑥 less than 𝑎.
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One-Sided Limits (1/6)

Calculus



Definitions (2/4):

We write

lim
𝑥→𝑎+

𝑓(𝑥) = 𝐿

and say the right-hand limit of 𝑓(𝑥) as 𝑥 approaches 𝑎 [or 

the limit of 𝑓(𝑥)as 𝑥 approaches 𝑎 from the right] is equal 

to 𝐿 if we can make the values of 𝑓(𝑥) arbitrarily close to 𝐿
by taking 𝑥 to be sufficiently close to 𝑎 with 𝑥 greater than 

𝑎.
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One-Sided Limits (1/6)

Calculus



Definitions (3/4):

64©Ahmed Hagag

One-Sided Limits (1/6)

Calculus



Definitions (4/4):

We see that

lim
𝑥→𝑎

𝑓(𝑥) = 𝐿 if and only if

lim
𝑥→𝑎−

𝑓(𝑥) = 𝐿 and      lim
𝑥→𝑎+

𝑓(𝑥) = 𝐿
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One-Sided Limits (1/6)

Calculus



Example 1:

Show that lim
𝑥→0

𝑓 𝑥 is exist, where 𝑓 𝑥 = 𝑥 .
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One-Sided Limits (2/6)

Calculus



Example 1:

Show that lim
𝑥→0

𝑓 𝑥 is exist, where 𝑓 𝑥 = 𝑥 .
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One-Sided Limits (2/6)

Calculus

lim
𝑥→0−

𝑓(𝑥) = 0 and

lim
𝑥→0+

𝑓(𝑥) = 0 then

lim
𝑥→0

𝑓(𝑥) = 0



Example 2:

Show that lim
𝑥→0

𝑓 𝑥 is doesn't exist, where

𝑓(𝑥) = ቐ
0 , 𝑥 < 0

1 , 𝑥 ≥ 0
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One-Sided Limits (3/6)

Calculus



Example 2:

Show that lim
𝑥→0

𝑓 𝑥 is doesn't exist, where

𝑓(𝑥) = ቐ
0 , 𝑥 < 0

1 , 𝑥 ≥ 0
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One-Sided Limits (3/6)

Calculus



Example 2:

Show that lim
𝑥→0

𝑓 𝑥 is doesn't exist, where

𝑓(𝑥) = ቐ
0 , 𝑥 < 0

1 , 𝑥 ≥ 0
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One-Sided Limits (3/6)

Calculus

lim
𝑥→0−

𝑓(𝑥) = 0 and

lim
𝑥→0+

𝑓(𝑥) = 1 then

lim
𝑥→0

𝑓(𝑥) is doesn't exist



Example 3:

Show that lim
𝑥→0

𝑓 𝑥 is doesn't exist, where 𝑓 𝑥 =
𝑥

𝑥
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One-Sided Limits (4/6)

Calculus



Example 3:

Show that lim
𝑥→0

𝑓 𝑥 is doesn't exist, where 𝑓 𝑥 =
𝑥

𝑥

𝑓(𝑥) = ቐ
1 , 𝑥 > 0

−1 , 𝑥 < 0
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One-Sided Limits (4/6)

Calculus



Example 3:

𝑓(𝑥) = ቐ
1 , 𝑥 > 0

−1 , 𝑥 < 0
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One-Sided Limits (4/6)

Calculus



Example 3:

𝑓(𝑥) = ቐ
1 , 𝑥 > 0

−1 , 𝑥 < 0
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One-Sided Limits (4/6)

Calculus

lim
𝑥→0−

𝑓(𝑥) = −1 and

lim
𝑥→0+

𝑓(𝑥) = 1 then

lim
𝑥→0

𝑓(𝑥) is doesn't exist



Example 4:

For the function 𝑓 graphed in the accompanying figure, 

Find

a) lim
𝑥→2−

𝑓 𝑥
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One-Sided Limits (5/6)

Calculus



Example 4:

For the function 𝑓 graphed in the accompanying figure, 

Find

a) lim
𝑥→2−

𝑓 𝑥

= 2
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One-Sided Limits (5/6)

Calculus



Example 4:

For the function 𝑓 graphed in the accompanying figure, 

Find

b) lim
𝑥→2+

𝑓 𝑥
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One-Sided Limits (5/6)

Calculus



Example 4:

For the function 𝑓 graphed in the accompanying figure, 

Find

b) lim
𝑥→2+

𝑓 𝑥

= 0
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One-Sided Limits (5/6)

Calculus



Example 4:

For the function 𝑓 graphed in the accompanying figure, 

Find

c) lim
𝑥→2

𝑓 𝑥
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One-Sided Limits (5/6)

Calculus



Example 4:

For the function 𝑓 graphed in the accompanying figure, 

Find

c) lim
𝑥→2

𝑓 𝑥

= doesn′t exist
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One-Sided Limits (5/6)

Calculus



Example 4:

For the function 𝑓 graphed in the accompanying figure, 

Find

d) 𝑓(2)
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One-Sided Limits (5/6)

Calculus



Example 4:

For the function 𝑓 graphed in the accompanying figure, 

Find

d) 𝑓(2)

= 2
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One-Sided Limits (5/6)

Calculus



Example 5:

For the function 𝑓 graphed in the accompanying figure, 

Find

a) lim
𝑥→0+

𝑓 𝑥
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One-Sided Limits (6/6)

Calculus



Example 5:

For the function 𝑓 graphed in the accompanying figure, 

Find

a) lim
𝑥→0+

𝑓 𝑥

= 1
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One-Sided Limits (6/6)

Calculus



Example 5:

For the function 𝑓 graphed in the accompanying figure, 

Find

b) lim
𝑥→0−

𝑓 𝑥
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One-Sided Limits (6/6)

Calculus



Example 5:

For the function 𝑓 graphed in the accompanying figure, 

Find

b) lim
𝑥→0−

𝑓 𝑥

do not exist
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One-Sided Limits (6/6)

Calculus



Example 5:

For the function 𝑓 graphed in the accompanying figure, 

Find

c) lim
𝑥→2+

𝑓 𝑥
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One-Sided Limits (6/6)

Calculus



Example 5:

For the function 𝑓 graphed in the accompanying figure, 

Find

c) lim
𝑥→2+

𝑓 𝑥

= 1
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One-Sided Limits (6/6)

Calculus



Example 5:

For the function 𝑓 graphed in the accompanying figure, 

Find

c) lim
𝑥→2−

𝑓 𝑥
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One-Sided Limits (6/6)

Calculus



Example 5:

For the function 𝑓 graphed in the accompanying figure, 

Find

c) lim
𝑥→2−

𝑓 𝑥

= 1
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One-Sided Limits (6/6)

Calculus



Example 5:

For the function 𝑓 graphed in the accompanying figure, 

Find

c) lim
𝑥→2

𝑓 𝑥
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One-Sided Limits (6/6)

Calculus



Example 5:

For the function 𝑓 graphed in the accompanying figure, 

Find

c) lim
𝑥→2

𝑓 𝑥

= 1
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One-Sided Limits (6/6)

Calculus



Example 5:

For the function 𝑓 graphed in the accompanying figure, 

Find

d) 𝑓(2)
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One-Sided Limits (6/6)

Calculus



Example 5:

For the function 𝑓 graphed in the accompanying figure, 

Find

d) 𝑓(2)

= 2
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One-Sided Limits (6/6)

Calculus



Special Trigonometric Limits (1/3)
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Finding Limit (1/7)

Calculus

lim
𝑥→0

sin 𝑥

𝑥
= 1



Special Trigonometric Limits (2/3)
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Finding Limit (1/7)

Calculus

lim
𝑥→0

sin 𝑥

𝑥
= 1

cos 𝑥 ≤
sin 𝑥

𝑥
≤ 1



Special Trigonometric Limits (3/3)
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Finding Limit (1/7)

Calculus

lim
𝑥→0

sin 𝑥

𝑥
= 1

If 𝑎, 𝑏 are constants

lim
𝒙→0

sin 𝒂𝒙

𝒃𝒙
=
𝑎

𝑏



Example 1: Evaluate the following limit (1/2)

98©Ahmed Hagag

Finding Limit (2/7)

Calculus

lim
𝑥→0

sin 5𝑥

𝑥



Example 1: Evaluate the following limit (2/2)
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Finding Limit (2/7)

Calculus

lim
𝑥→0

sin 5𝑥

𝑥
= 5 ∙ lim

𝑥→0

sin 5𝑥

5𝑥
= 5 ∙ 1 = 5



Example 2: Evaluate the following limit (1/2)
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Finding Limit (3/7)

Calculus

lim
𝑥→0

sin 𝑥

5𝑥



Example 2: Evaluate the following limit (2/2)
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Finding Limit (3/7)

Calculus

lim
𝑥→0

sin 𝑥

5𝑥
=
1

5
∙ lim

𝑥→0

sin 𝑥

𝑥
=
1

5
∙ 1 =

1

5



Special Trigonometric Limits

102©Ahmed Hagag

Finding Limit (4/7)

Calculus

lim
𝑥→0

tan 𝑥

𝑥
= 1

= lim
𝑥→0

sin 𝑥

𝑥 cos 𝑥
= lim

𝑥→0

sin 𝑥

𝑥
∙ lim
𝑥→0

1

cos 𝑥

= 1 ∙ 1 = 1



Special Trigonometric Limits
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Finding Limit (5/7)

Calculus

lim
𝑥→0

1 − cos 𝑥

𝑥
= 0 Multiplying by the 

conjugate 



Oscillating Behavior (1/3):

Find lim
𝑥→0

sin
1

𝑥
if it exists.
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Finding Limit (6/7)

Calculus

Limit doesn’t exist



Oscillating Behavior (2/3):

Find lim
𝑥→0

sin
1

𝑥
if it exists.
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Finding Limit (6/7)

Calculus

lim
𝑥→0

sin
1

𝑥
doesn't exist:

𝑓 𝑥 oscillates between two 

fixed values {1, −1} as 𝑥
approaches 0. 

Limit doesn’t exist



Oscillating Behavior (3/3):

lim
𝑥→0

sin(𝜋/𝑥) does not exist.
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Finding Limit (6/7)

Calculus

Oscillate between 1 and -1 

infinitely often as x approaches 0



Unbounded Behavior (1/4):

Find  lim
𝑥→0

1

𝑥2
if it exists.
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Finding Limit (7/7)

Calculus

Limit doesn’t exist



Unbounded Behavior (2/4):

Find lim
𝑥→0

1

𝑥2
if it exists.
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Finding Limit (7/7)

Calculus

Limit doesn’t exist



Unbounded Behavior (3/4):

Find  lim
𝑥→0

1

𝑥2
if it exists.
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Finding Limit (7/7)

Calculus

You can see that as 𝑥 approaches 0
from either the right or the left, 𝑓(𝑥)
increases without bound.

Because 𝑓(𝑥) does not become 

arbitrarily close to a single number 𝐿
as 𝑥 approaches 0, you can conclude 

that the limit does not exist.

Limit doesn’t exist



Unbounded Behavior (4/4):

Find  lim
𝑥→0

1

𝑥2
if it exists.
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Finding Limit (7/7)

Calculus

To indicate the kind of behavior 

exhibited in this example, we use 

the notation

Limit doesn’t exist



Definition (1/2):

Let 𝑓 be a function defined on both sides 

of 𝑎, except possibly at 𝑎 itself. Then

means that the values of 𝑓(𝑥) can be 

made arbitrarily large (as large as we 

please) by taking 𝑥 sufficiently close to 

𝑎, but not equal to 𝑎.
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Infinite Limits (1/6)

Calculus



Definition (2/2):

Let 𝑓 be a function defined on both sides 

of 𝑎, except possibly at 𝑎 itself. Then

means that the values of 𝑓(𝑥) can be 

made arbitrarily large negative by taking 

𝑥 sufficiently close to 𝑎, but not equal to 

𝑎.
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Infinite Limits (1/6)

Calculus



One-Sided (1/2):
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Infinite Limits (2/6)

Calculus



One-Sided (2/2):
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Infinite Limits (2/6)

Calculus



Example 1:
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Infinite Limits (3/6)

Calculus



Example 1:
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Infinite Limits (4/6)

Calculus



Example 1:
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Infinite Limits (4/6)

Calculus



Example 1:
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Infinite Limits (4/6)

Calculus



Example 2:

Find lim
𝑥→𝜋/2

tan 𝑥.

119©Ahmed Hagag

Infinite Limits (5/6)

Calculus



Example 2:

Find lim
𝑥→𝜋/2

tan 𝑥.

120©Ahmed Hagag

Infinite Limits (5/6)

Calculus



Example 2:

Find lim
𝑥→𝜋/2

tan 𝑥.
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Infinite Limits (5/6)

Calculus

lim
𝑥→𝜋/2−

tan 𝑥 = +∞ and

lim
𝑥→𝜋/2+

tan 𝑥 = −∞ then

lim
𝑥→𝜋/2

tan 𝑥 is doesn′t exist



Example 3:

Find lim
𝑥→0+

ln 𝑥.
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Infinite Limits (6/6)

Calculus



Example 3:

Find lim
𝑥→0+

ln 𝑥.
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Infinite Limits (6/6)

Calculus



Example 3:

Find lim
𝑥→0+

ln 𝑥.

124©Ahmed Hagag

Infinite Limits (6/6)

Calculus

lim
𝑥→0+

ln 𝑥 = −∞



Definition:

A function 𝑓 is continuous at a number 𝒂 if

lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎)
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Continuity (1/5)

Calculus



Definition:

A function 𝑓 is continuous at a number 𝒂 if

lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎)

1. 𝑓(𝑎) is defined (that is, 𝑎 is in the domain of 𝑓 ),

2. lim
𝑥→𝑎

𝑓(𝑥) exists,

3. lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎).

126©Ahmed Hagag

Continuity (2/5)

Calculus



𝒇 is not continuous at 𝒙 = 𝒄
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Continuity (3/5)

Calculus

1

𝑐 removable



𝒇 is not continuous at 𝒙 = 𝒄
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Continuity (3/5)

Calculus

2

𝑐 jump



𝒇 is not continuous at 𝒙 = 𝒄
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Continuity (3/5)

Calculus

3



𝒇 is not continuous at 𝒙 = 𝒂
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Continuity (3/5)

Calculus

4

𝑎 infinte

If the graph of a function 𝑓 has 
a vertical asymptote at 𝑥 = 𝑎, 
then 𝑓 is not continuous at 𝑎.



Example 1:

Is the following functions discontinuous? 
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Continuity (4/5)

Calculus



Example 1:

Is the following functions discontinuous? 

Notice that 𝑓 2 is not defined, 

so 𝑓 is discontinuous at 𝑥 = 2. 
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Continuity (4/5)

Calculus



Example 1:

Is the following functions discontinuous? 

Notice that 𝑓 2 is not defined, 

so 𝑓 is discontinuous at 𝑥 = 2. 
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Continuity (4/5)

Calculus



Example 2:

Is the following functions discontinuous? 
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Continuity (5/5)

Calculus



Example 2:

Is the following functions discontinuous? 
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Continuity (5/5)

Calculus



Example 2:

Is the following functions discontinuous? 

𝑓 is discontinuous at 𝑥 = 0. 
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Continuity (5/5)

Calculus

does not exist.



Video Lectures

https://www.youtube.com/playlist?list=PLxIvc-MGOs6gkSl_PPAVJpebKDLo-ijECAll Lectures: 

Lecture #4:  https://www.youtube.com/watch?v=yywfUe84z6E&list=PLxIvc-

MGOs6gkSl_PPAVJpebKDLo-ijEC&index=5

137©Ahmed Hagag Calculus

https://www.youtube.com/playlist?list=PLxIvc-MGOs6gkSl_PPAVJpebKDLo-ijEC
https://www.youtube.com/watch?v=yywfUe84z6E&list=PLxIvc-MGOs6gkSl_PPAVJpebKDLo-ijEC&index=5
https://www.youtube.com/watch?v=yywfUe84z6E&list=PLxIvc-MGOs6gkSl_PPAVJpebKDLo-ijEC&index=5


Dr. Ahmed Hagag
ahagag@fci.bu.edu.eg
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